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The near-globally distributed ecto-parasitic mite of the Apis mellifera honey-
bee, Varroa destructor, has formed a lethal association with Deformed wing
virus, a once rare and benign RNA virus. In concert, the two have killed
millions of wild and managed colonies, particularly across the Northern
Hemisphere, forcing the need for regular acaricide application to ensure
colony survival. However, despite the short association (in evolutionary
terms), a small but increasing number of A. mellifera populations across
the globe have been surviving many years without any mite control
methods. This long-term survival, or Varroa resistance, is consistently associ-
ated with the same suite of traits (recapping, brood removal and reduced
mite reproduction) irrespective of location. Here we conduct an analysis of
data extracted from 60 papers to illustrate how these traits connect together
to explain decades of mite resistance data. We have potentially a unified
understanding of natural Varroa resistance that will help the global industry
achieve widespread miticide-free beekeeping and indicate how different
honeybee populations across four continents have resolved a recent threat
using the same suite of behaviours.
1. Introduction
Throughout the world the western honeybee, Apis mellifera, is an irreplaceable
species, particularly in terms of their pollination services that contribute to
food security and wider ecosystem health [1,2]. Despite the huge reliance on
and commercialization of honeybees, their populations have for many years
suffered high losses, particularly over the winter period [3,4]. While it is appar-
ent that numerous stressors such as intensive agriculture and diseases are
owing to this decline, it is well established that during the past 70 years the
synergy between Deformed wing virus (DWV) and its vector Varroa destructor
has become a critical global threat to honeybee health [5].

After Varroa jumped the species barrier around the 1950s, from its native
host Apis cerana (Asian honeybee) onto A. mellifera, it spread globally along
with DWV [6–8]. Currently only Australia and a few small, isolated islands
are free of both DWV and Varroa [9,10]. As A. mellifera was completely naive
to the mite, Varroa typically increased uncontrollably, which, coupled with a
new viral transmission route (during mite feeding), led to the catastrophic col-
lapse of both managed and feral populations across the globe [11]. As a result,
particularly in the Northern Hemisphere, the constant use of acaricides is
necessary for beekeeping to survive [12]. However, while acaricides help
reduce the Varroa and DWV burden, they also remove the selective pressure
from A. mellifera hampering any adaptation to the parasite [13–18]. Only
three Varroa-infested A. mellifera populations exist without DWV and hence
have never been treated with acaricides. These exist in the highlands of
Papua New Guinea, the Solomon Islands [19] and on the island of Fernando
de Noronha, Brazil [20]. Although the mechanism is unknown, Varroa
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resistance arose quickly, caused no colony losses and resulted
in high levels of infertile mites in the Fernando de Noronha
population [20].

In the presence of DWV and the absence of treatment,
A. mellifera populations are able to gradually develop Varroa
resistance, typically after an initial period of colony losses
[21]. Resistance is the ability of a population to survive long
term without any treatment for Varroa within a given
environment [16]. Thus, we do not view resistance as a
fixed trait but the product of adaptive traits and adaptation
to the local environment [17,22] in terms of the surrounding
managed and feral colonies. Varroa-resistant colonies first
appeared in Africa [23,24] and Africanized honeybees
(African × European hybrid) in South America [25], and
were associated with widespread lack of control due to
acaricide cost and the general resilience of the bee popu-
lations. These populations, unlike in developed countries,
are not frequently treated or medicated against a range of
pathogens and pests [26]. Despite this, a small but increasing
number of beekeepers in Europe [27], the UK [28,29] and
the USA [30,31] have stopped all regular acaricide treat-
ment and often establish their managed colonies from feral
swarms [31,32].

Independently, each Varroa-resistant honeybee population
previously studied across seven countries has developed the
same traits to control the mite. These are: (i) brood removal,
in which Varroa-infested pupae are removed; (ii) recapping,
where holes are created allowing direct access to the pupa
and then resealed; and (iii) mite infertility, where female
mites are unable to produce viable (mated) female offspring.

Unlike many maladies the Varroa–DWV assoication is a
new problem especially in evolutionary terms, since Varroa
has only been in A. mellifera populations between 15 and
70 years, depending on the location [6]. However, three
studies [27,33,34] using the same methods found two traits
(increased recapping and mite infertility) in Varroa-resistant
populations in South Africa, Brazil, France, UK, Norway
and Sweden, countries with different environmental con-
ditions (tropical to sub-artic). This indicates that Varroa
resistance has arisen in multiple locations, irrespective of
honeybee variety or environment, especially since recapping
behaviour is rarely seen in Varroa-naive populations in
Australia, Isle of Man and Isle of Colonsay, UK [33,34].

This study’s aim is to bring together data from 60 publi-
cations over the past 40 years combined with a recent
breakthrough study [27] to compare the expression of
brood removal, recapping and mite infertility in resistant
colonies and susceptible colonies. We then construct a poten-
tial framework that links these three traits and use modelling
to explore various aspects of the framework.
2. Methods
(a) Data collection
We searched published literature using Scopus, Web of Science
and Google Scholar to collect data on the three key traits
namely brood removal, recapping and Varroa non-reproduction
in worker brood from susceptible and resistant A. mellifera popu-
lations. We define resistant populations as those that have
survived five or more years without any form of mite treatment,
although many populations studied have survived untreated
more than 10 years and some for decades. Despite many studies
used to collate the data, the methods employed are all basically
the same. Furthermore, a study was only included if a minimal
sample size of 50 cells was recorded, used natural comb, and
only included cells infested with a single foundress.

We extracted information from 60 key data-rich papers.
Where possible single colony data were extracted. For example,
all recapping data (n = 163) came from single colonies; for
brood removal nine of the 86 data points are colony averages
and for mite infertility 75 of the 99 data points are colony
averages, due to sample size limitations (see electronic sup-
plementary material data for all source data). No susceptible
colonies are known from where Africanized and African bees
occur hence comparisons with resistant colonies in these
locations are not possible. Almost all the data collected concerns
the Korean ‘K’ haplotype of Varroa (see electronic supplementary
material data for more information).
(b) Brood removal
We used the standard bee search string (Apis mellifera OR hon-
eybee OR honeybee) AND (removal OR brood removal OR
hygienic behaviour OR VSH OR varroa-sensitive hygiene OR
varroa-specific hygiene) AND varroa. We looked for studies
that measured the removal of brood that had been artificially
or naturally infested (one study [35]) with Varroa. Studies using
artificial infestation all had to follow the same basic protocol out-
lined in [33]. In brief, a frame of freshly capped brood is taken
from a colony and mites are inserted carefully into the capped
cells containing recently capped cells. After around 10 days in
the colony the frame is inspected, and the number of infested
cells removed is recorded.
(c) Recapping
We used the standard bee string AND (re-capping OR recap-
ping) AND varroa. To be included, studies had to have
measured the recapping of Varroa-infested cells following the
correct protocol outlined in [36,37].
(d) Mite infertility
We used the standard bee search string AND (varroa OR varroa
mite OR mite) AND (reproduction OR non-reproduction OR fer-
tility OR infertility). Here we define infertility as the inability to
produce a viable (mated) female offspring and so we collected
data following this definition. Importantly, some data used
were collected from papers that used the definition of no egg
laying. The justification for this is that non-egg laying also falls
within the definition, and at worst provides an underestimate
of the reduced reproductive rate of mites. To calculate the
effect of brood removal on offspring production by Varroa, a
simple equation was formulated,

(1� a)� b ¼ c,

where a is proportion of infested cells removed, b is maximum
number of viable offspring produced per cycle and c is average
number of viable female offspring produced per reproductive
cycle.
(e) Data analysis
The sample sizes (in cells) were used to calculated weighted
averages for each of the traits for resistant and susceptible popu-
lations. Statistical analyses were conducted in Minitab version 18
on unweighted data [38]. Mann–Whitney U-tests were used to
compare the removal abilities, recapping abilities and infertile
mite proportions of resistant and susceptible populations.
Statistical significance for all tests was p < 0.05.
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The effect of brood removal on mite and honeybee popu-
lation growth was modelled using the BEEHAVE model [39].
Increasing worker pupal mortality rates were used to simulate
brood removal (as dead brood is removed in the simulation).
The mortality was independent of mite infestation as the effect
of DWV was removed from the equation for simplicity since
within the BEEHAVE model DWV also affects pupa mortality
confounding the observation of the effect of brood removal.
This simplification was deemed acceptable as the result would
only provide an underrepresentation. In actuality, as bees target
infested cells it would likely take less removal to achieve the
same outcome.
l/rspb
Proc.R.Soc.B

2

( f ) Framework construction
After collecting and analysing the data, we constructed a
hypothetical framework to explain how many of the various
traits are connected. Data from this study or findings from
related studies were used to justify the proposed link between
each trait.
 88:20211375
3. Results
(a) Honeybee behaviour
Recapping behaviour is the resealing of holes made in the cap
that covers the developing worker pupa, holes allow better
access to the signal(s) that trigger hygienic behaviour
[33,40]. We collected data from 163 colonies from five studies
that took place across seven countries (figure 1c). This
showed that in resistant colonies significantly more infested
cells are recapped than in susceptible colonies (55% versus
33%) (U = 1280, p < 0.00001).

Brood removal is a trait of honeybees where diseased or
dead pupae are removed. It defends the colony against the
spread of several diseases including chalkbrood, American
foul brood and Varroa infestation. Data from mite-infestation
experiments from 403 colonies (86 data points) across 10
studies conducted in seven countries demonstrate that resist-
ant colonies are significantly (U = 341.5, p < 0.0001) better at
removing mite-infested brood than susceptible colonies
(38% versus 22%) (figure 1b). When separated into popu-
lations both Africanized bees and their African relatives
(A. m scutellata and A. m capensis) have significantly greater
(U = 83, p < 0.0001 and U = 207.5, p = 0.002) removal abilities
than susceptible colonies in Europe.
(b) Varroa reproduction
We used the equation ‘(1− a) × b = c’ (see Methods), which
generates a linear relationship between brood removal and
reproductive output (figure 1d ). The removal of 38% and
22% infested brood in resistant or susceptible colonies
(figure 1b) predicts 0.87 (resistant) and 1.09 (susceptible)
viable female offspring are produced per reproductive cycle
when no removal allows 1.4 viable female offspring to be
produced [42]. If a maximum value of 1.6 (56) is used,
values of 0.99 (resistant) and 1.25 (susceptible) are obtained.
These values are independent of the total number of repro-
ductive cycles performed, which varies between two and
three [43–45]. The decrease in reproductive output increases
the proportion of infertile mites (see Discussion for details).
Data from 786 colonies (99 data points) across 40 studies in
14 countries showed that resistant populations had
significantly (U = 28, p < 0.0001) greater proportions of infer-
tile mites than susceptible colonies (45% versus 17%)
(figure 1e).

(c) Colony level effects
The BEEHAVE model predicted that removing greater than
40% of infested pupae results in negative mite population
growth (figure 1f ). Additionally, it predicted that, irrespective
of infestation status, if the brood removal rate were to exceed
40% in spring, 55% in summer or 60% in winter, the colony
would collapse (electronic supplementary material, figure
S2). However, resistant colonies now typically only have
worker-brood infestation rates of around 4% (figure 1h).

(d) Decreasing worker-brood infestation levels
In the Africanized colonies, which are all resistant, average
worker-brood infestation rates have fallen from 20% during
1996–1998 to 4% in 2018–2019 (figure 1h). Additional prelimi-
nary data from UK-resistant colonies (n = 44) collected by the
authors and [46] found that brood infestation averaged at 6%
and was not significantly different to Africanized colonies in
2018/2019 (U = 460, p = 0.052).

(e) Framework
Using the data and analyses presented above, we constructed
a framework to link them together to explain how Varroa
resistance may develop in A. mellifera (figure 1). Our inter-
pretation centres on the idea that an existing trait, hygienic
behaviour, when adapted to detecting and removing mite-
infested pupae, can explain all other traits. Given the data
and the models used as well as the findings of other studies,
we believe our framework to be the most plausible inter-
pretation of the results we have presented here. Further
justifications for the framework are presented in the
discussion.
4. Discussion
The proposed framework attempts to explain how Varroa
resistance may develop in honeybee (A. mellifera) populations.
The framework suggests that resistance is a sequence of events
that generate the key traits (increased recapping, brood
removal and mite infertility) rather than a single trait
[21,47]. Here we found that the enhanced expression of
these three key traits is common among resistant populations.
This independent occurrence of the key traits within colonies
across the world could be an example of parallel evolution
[27], because while the recapping and removal behaviours
predate Varroa, they have been co-opted to control Varroa,
recapping is rare trait in mite-naive colonies, but occurs at
low and high levels in susceptible and resistant colonies
respectively [33,40]. Similarly, other traits such as brood sup-
pression of mite reproduction [48], or DWV tolerance [49,50]
may complement those within the framework. There is also
likely to be a mite element to resistance which could be illumi-
nated by further studies into the coevolution of A. mellifera
and Varroa [51,52]. As resistance is a population level trait
rather than a single colony trait, a resistant colony becomes
vulnerable if moved out of its population and could collapse
if a sudden influx of mites occurs due to excessive (40–60%)
brood removal (electronic supplementary material, figure
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Figure 1. A proposed framework for the development of Varroa resistance. Boxes in blue (a) or with a blue border (b,d,h) are ‘causes’ of the ‘effects’ that are indicated
by boxes in orange (i,j) or with orange borders (b–g). All source data for each chart are available in the electronic supplementary material, tables S1–S8 and figure S1.
Arrows with a question mark indicate possible links suggested in the literature. In box h, the red arrow indicates that in untreated, susceptible colonies Varroa
infestations continuously rise until colony death. Deformed wing virus data in box g are adapted from [41] and discussed below. (Online version in colour.)
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S2). This may explain why resistant colonies moved out of
their population typically do not survive [53] (S.J.M. 2017,
2019, personal observation).
(a) Honeybee behaviour
The framework begins with the increased detection of Varroa-
infested cells, an ability that has been linked to resistant bees
by numerous studies [33,54–57] (figure 1a). Unlike most
brood diseases Varroa-DWV is a chronic condition that does
not kill the developing host pupae but shortens its lifespan
as an adult [43,58,59]. Bees already have a well-developed
hygienic behaviour response but it typically deals with dis-
eases that cause dead brood [60]. Despite this, clear
evidence exists for the detection of infested cells, directly
from six mite insertion experiments and one natural
infestation experiment (figure 1b), and indirectly from the
behaviour known as recapping (figure 1c).

The fact that on average resistant colonies remove and
recap significantly greater proportions of infested cells than
susceptible colonies (figure 1b,c) indicates that increased
detection of infested cells causes these traits to increase.
Additionally, recapping has been shown to be positively cor-
related with brood removal [27,33] further suggesting a
common trigger. Increased recapping may occur because
more sensitive adults [55–57] investigate sealed brood
around infested cells either due to a diffuse signal emanating
from infested cells or increased cursory checking near
infested cells [33,40].

Typically, hygienic behaviour tests use the freeze-killed
brood method [61], and this does not correlate with removal
of mite-infested brood [33,46,62–66]. However, this does not
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negate the contribution of hygienic behaviour to mite resist-
ance, since the cues are different (living versus dead pupae)
[47] and freezing kills many brood at the same time in the
same location, thus generating an abnormally high concen-
tration of cues. Therefore, if colonies perform exceptionally
well (remove greater than 95% dead brood within 24 h)
they may remove a reasonable amount (average of 66%) of
Varroa-infested brood and have high recapping rates [65].

It is unclear whether the cues involved are emanating
from the mites or pupae [55,56,67–69] or both [54], since para-
sitization by Varroa and DWV infection causes changes to the
chemical profile of pupae [68,69,70–73]. Six compounds (four
ketones and two acetates) have been detected on both
infested pupae and mites, and although all adult workers
can detect these compounds only workers from resistant
colonies can distinguish the mix of six compounds from
healthy brood [54]. Other studies [71,74] have detected differ-
ent compounds that could also stimulate a hygienic response.
The general consensus is that multiple chemical cues are
involved in hygienic behaviour, which may prevent the loss
of healthy brood, if a cell is wrongly opened the subsequent
lack of the secondary cue could trigger resealing or ‘recap-
ping’ [40]. Indeed, recapping of both non-infested and
infested cells is consistently elevated in all resistant popu-
lations [33]. The hole made in the cell cap is generally less
than 1 mm in non-infested cells, but significantly larger (up
to 5 mm) in infested cells [33,46], which may increase the
detection of less volatile cues such as those described [54].

(b) Varroa reproduction
In our framework, we link increased removal of mite-infested
to reduced reproductive output and thus increased mite
infertility (figure 1b,d,e). Previous studies have also suggested
links between increased brood removal, potentially recap-
ping [27,75] and reduced mite reproductive success [76]. In
agreement, we found that resistant colonies had a signifi-
cantly greater percentage of infertile mites (figure 1e). A
simple explanation is that disrupting the very uniform
sequence of mite-reproduction leads to foundress-mites pro-
ducing less offspring and depleting their finite supply of
18–30 eggs [77–80] and limited supply of spermatozoa
[80,81]. Infertile mites have fewer spermatozoa [82], and the
number of laid eggs steadily declines in mites preforming
more than two reproductive cycles [77]. Using the simple
equation (figure 1d ), the estimated reproductive values for
resistant and susceptible colonies of between 0.87–0.99 and
1.09–1.25, respectively, were similar to actual values from
resistant and susceptible colonies [27,33,83]. Whatever the
reason, the reproductive asynchrony caused by the removal
of infested pupa causes less mites to contribute to the next
generation, thus population growth slows and there is a
reduced proportion of new fertile mites compared to older
infertile mites [76,84]. In addition to brood removal,
reductions in mite fertility may be the result of similar inter-
ruptions by recapping [75] and/or brood effects [48], but
more data is needed.

(c) Colony-level effects
Reduced fertility we then linked to reduced population
growth because our BEEHAVE model predicted that infested
brood removal above 40% caused negative mite population
growth (figure 1f ). Thus, in our framework the detection
and removal via cannibalization of infested worker-brood
leads to reduced mite population growth, a commonly occur-
ring outcome in surviving populations [47]. Additionally,
because brood removal varies within a population (figure 1b)
the BEEHAVE model helps explain the fluctuating mite
populations observed in long-term studies of resistant colo-
nies [83,85,86]. Other studies also found an association
between increased mite infertility and a reduced mite
burden [24,63,87–89], again suggesting it may link brood
removal and population growth.

Furthermore, reduced mite burden also reduces the
number of viral vectors [22], causing lower viral titres
(figure 1g) [41,90–92] and a reduced number of deformed
bees [93–95]. One study [96] found that removal above 95%
of freeze-killed pupae lowered mite population growth and
significantly lowered DWV titres in workers than colonies
below 95% removal. However, cannibalism of infested
pupae allows DWV prevalence to remain high [97] even in
resistant populations [98], but titres fall since oral (natural)
viral transmission is much less infective than via injection
[93,97].
(d) Decreasing worker-brood infestation levels
In non-resistant untreated colonies, mite populations increase
until colony collapse with increasing brood infestation levels
from 30% to 100% at colony collapse [99], whereas in resistant
colonies worker-brood infestation rate is maintained below
20% (figure 1h). Interestingly, we found that worker-brood
infestation has fallen significantly (U = 123, p < 0.0001) from
20% to just 4% over the past two decades in resistant colonies
in South America (figure 1h) currently the only location with
long-term data.

We speculate that this is because mites are increasingly
waiting for drone brood, which is not targeted by hygienic
behaviour in either A. mellifera nor A. cerana [100]. Further-
more, the proportion of mites on adult bees decreased
when drone brood was plentiful and increased when it was
scarce [101]. Similarly, in resistant colonies from Uruguay
the ratio of the mites’ distribution between worker and
drone cells was much greater (1 : 12.6) than in susceptible
colonies (1 : 5.7) [102]. Heavily infested drone brood has
also been observed in resistant populations in Mexico,
Brazil and South Africa (30% [33]); however, much of the
evidence is anecdotal and needs studying further.

In fact, the evolutionary reason why V. jacobsoni avoids
worker brood in its natural host A. cerana remains unclear.
It is well established in A. cerana that V. jacobsoni rarely repro-
duces in worker brood [103–106], and the drone pupa dies if
infested by multiple mite families and becomes entombed
within the cell rather than removed [107]. When V. destructor
mites are artificially inserted into incubated A. cerana worker
brood 30–50% of the pupae die [108], potentially due to a
saliva toxin protein from V. destructor, but no mortality
occurs in A. mellifera [108,109]. This implies that hygienic be-
haviour in A. cerana relies on detecting dead brood, making
the ability to detect living infested pupa and mites [54] in
A. mellifera even more unique. However, further studies in
A. cerana are required to differentiate between or link together
(i) the detection and removal of living mite-infested brood,
(ii) social apoptosis and removal of dead brood, and (iii)
any coevolution by Varroa or worker brood that prevents
mite reproduction.



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211375

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 A

ug
us

t 2
02

1 
Finally, in a small resistant A. mellifera population on the
remote Fernando de Noronha Island, Brazil, adult mite infes-
tation levels fell from 26% in 1991 to 1–2% in 2016. However,
in worker and drone brood infestation levels have stabilized
around 20% and 40%, respectively (electronic supplementary
material, figure S3) [20,110], despite very high infertility rates
[20]. This may be explained by the very rare absence of DWV
from this population that allows high brood infestation levels
to persist without the negative impacts of DWV. Confirma-
tory studies from the other two DWV-free Varroa-infested
populations [19] are needed.

(e) Reduced colony losses
The final link in our framework is that reduced mite and virus
burden will lead to enhanced colony survival [43]. Indeed, the
reduction of mite burden and associated enhanced survival is
the primary function of acaricides. Enhanced survival is hard
to measure as susceptible colonies are usually treated with
acaricides. However, the annual loss rates of treated colonies
are higher than resistant populations in Le Mans and Avignon
(France) [111]. Additionally, over 100 beekeepers across a
2500 km² region of north Wales (UK) have maintained 499
colonies treatment free for 11 years [32], and in Swindon
(UK) a small beekeeper group have kept treatment-free colo-
nies since 1995 [112], and neither group have report increased
losses. In South Africa, after an initial period of high losses,
annual colony losses stabilized at around 5% between 1998
and 2004, which is similar to pre-Varroa levels [23]. Also, in
Algeria, Tunisia and Morocco, initial colony losses were high,
although short-lived [113]. Across most of Africa [23,113–116]
and in Africanized colonies throughout Latin America no
widespread losses were reported where lack of acaracide use,
due to cost and availability, may have helped resistance
develop. Instead, widespread colony losses occurred in the
Northern Hemisphere as Varroa spread from Asia throughout
Europe and into the Americas, where acaracides were quickly
adopted.

( f ) Variability of data
A substantial issue when it comes to measuring resistance
traits is the inherent variability within colonies and thus
across populations. Within a colony, traits themselves are
not static and fluctuate with the changing season along
with the associated availability of worker and drone brood
and the infestation level [52,117–123]. Variability is also
likely due to temporal changes in the composition of the
different hygienic workers. To elaborate, the three main
stages of brood removal (the initial detection and opening
of the cell cap, the full uncapping of the cell and finally
removing or cannibalizing the pupae or recapping the cell
[124]) are conducted by bees of different ages and sensory
acuity, a division of labour further affected by genetic,
neural, social and environmental conditions [55,125–128].
For example, an imbalance of ‘uncapper’ versus ‘recapper’
bees may cause many brood cells to be left open [55]. Conse-
quently, it can be very hard to accurately measure resistance-
associated traits [117,118,129], resulting in a high degree of
variability within colonies and across colony-level datasets
(figure 1b,c,e). Ultimately, variability severely affects selec-
tion programmes (reviewed in [130]), whereas in natural
selection-based experiments such as bond experiments [15]
and black box experiments [13,131], assumptions on the
importance of traits are not made.
5. Conclusion
This study shows that the resistance traits of recapping, brood
removal and mite infertility are expressed at significantly
higher levels in resistant colonies than susceptible ones, and
we present a framework to potentially explain how these
common traits shared by resistant colonies can link together.
Although many local sub-species exist, A. mellifera remains a
single species and environmental conditions within the
colony (i.e. those that Varroa are subject to) remain remark-
ably constant irrespective of location, which has aided its
semi-domestication and global distribution. Natural bee-
driven resistance to Varroa is a sustainable, long-term sol-
ution, prevents the constant usage of acaricides, will not
weaken bees to any other maladies should they arise and
may provide an example of parallel evolution with the
same three traits arising in populations in several different
continents.
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